Control of radioactive materials in food

Establishing Legal Limits on radioactive materials in food

The indicator values given by the Nuclear Safety Commission were set as the provisional regulation values. (March 17, 2011 – March 30, 2012)

The present legal limits for radioactive materials in food have been enforced. (April 1, 2012 -)

Test results of radioactive materials in foods

No. of items inspected: March 18, 2011 – March 31, 2012 137,037 of which 1,204 were detected as above the provisional regulation values. (violation rate:0.88%) No. of items inspected: April 1, 2012 – June 30, 2013 359,539 of which 2,728 were detected as above the limits. (violation rate:0.76%)

Recall and dispose of food detected radioactive materials above the legal limits All the articles produced in the same lot of positive samples are recalled/disposed.

Restrictions of distribution of foods [Nuclear Emergency Response Headquarters] Restrictions on distribution shall be instructed on the basis of prefectures or smaller area units in a prefecture, judging from the spreading of places where radioactive materials above the legal limits are detected as a result of inspections. (March 21, 2011-)

Requirements for lifting

[Nuclear Emergency Response Headquarters]

The results of inspections conducted in the last one month includes three locations which have all the values below the legal limits per one municipality.

Establishment of the limits for Radionuclide in Foods

1. Concept of Japanese limits

The limits are based on 1 mSv in a year as an intervention level for the following reasons;

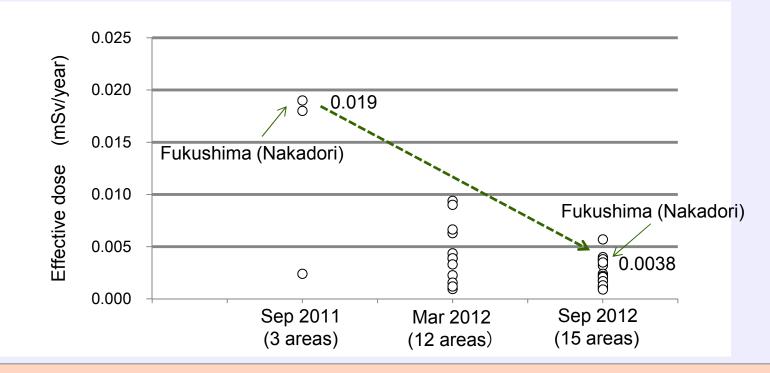
- The Guideline Levels of Codex Alimentarius (CODEX STAN 193-1995) adopted 1 mSv in a year as an intervention exemption level.
- Monitoring surveys demonstrated that concentrations of radionuclide decreased in most foods as time goes by (ALARA principle, As Low As Reasonably Achievable).

2. Comparison between Japanese limits and the Codex guideline levels

Category	Limit
Drinking water	10
Milk	50
General Foods	100
Infant Foods	50

○Codex guideline levels for radioactive cesium

Category	Limit
Infant foods	1000
Other foods	1000


(Unit : Bq/kg)

- 1 The Codex guideline adopts <u>10%</u> as the ratio of the amount of foodstuff imported from contaminated areas; on the other hand Japan established the limits on the assumption that <u>50%</u> of the marketed foods are contaminated, based on Japan's food self-sufficiency.
- 2 Japanese limits for radioactive cesium take into account the contribution of radioactive strontium, plutonium etc.
- 3 Japanese limits are calculated taking age-category into consideration

Estimations of effective dose from radioactive materials in foods

Estimations of annual effective dose from Cs-134 and Cs-137

Estimations of exposure (effective dose) to radioactive cesium in foods are decreasing constantly and now less than 1% of 1 mSv/year.

※ Foods were purchased in several areas in Japan including Fukushima Prefecture. Local grown products were selected, wherever possible.

In Fukushima (Nakadori Area), the annual effective dose decreased from 0.019 mSv/year to 0.0038 mSv/year.

()